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Abstract. For the first time, we present the calculation of the nonlinear optical coefficient
of the NdAl3(BO3)4 (NAB) crystal from a systematic and quantitative standpoint. Based on
the dielectric theory of complex crystals and the Levine bond charge model, the method of
calculation of the second-order nonlinear optical tensor coefficients of complex crystals has been
given systematically. The chemical bond parameters and linear and nonlinear susceptibilities
of the NAB crystal have been calculated in detail, and the calculated value ofdNAB

11 is
−5.81× 10−9 esu, which agrees with the measured value of 4.06× 10−9 esu.

Introduction

At the end of the 1960s people paid great attention to the studies of laser nonlinear
multifunction crystals. Neodymium aluminium borate, NdAl3(BO3)4, appeared in 1974
and has been studied ever since then [1–6], for it had many desirable features, such as
a low laser threshold, a high gain, a linearly polarized output, a small beam divergence,
high Nd3+ concentration and excellent physical and chemical properties. Nevertheless, it
is extremely difficult to grow single crystals of high optical quality and large enough for
cutting into laser rods [7]. Therefore, small NAB samples were used, and another laser
system was employed as a pumping system in almost all of the reports published [3] of
NAB lasing experiments. Efforts have been made to search for a best technique for the
growth of NAB crystals and a satisfactory flux system is found, which is suitable for the
growth of NAB single crystals by using a rotating seed. As a result, crystals with sizes up to
45 mm were obtained, which can be cut into laser rods in dimensions of 3.2 mm×23.7 mm
with high optical homogeneity [3]. The success in growing large NAB crystals with good
optical quality has given the possibility of producing a xenon-lamp-pumping NAB crystal
minilaser system with useful output characteristics.

NAB differs from most known stoichiometric Nd laser materials in that it is a high-Nd-
concentration laser crystal with an accentric space group. The lack of inversion symmetry
should allow second-order nonlinear optical process (e.g., second-harmonic generation) as
well as linear electrooptical modulation to be carried out directly in the laser crystal [8].

In this paper, we, for the first time, quantitatively analysed the optical nonlinearity in
the NAB crystal, by using the method we have set up to deal with complex compounds
[9], which, based on the Phillips–Van Vechten (PV) dielectric theory [10] and the Levine
bond charge model [11], theoretically predicted the value of the nonlinear optical tensor
coefficientdNAB

11 .
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1. Theory

In order to solve the problems of the chemical bond of complex crystals, we must separate
the multibond into single bonds, and the problem converts into separating the crystal formula
into bond subformula. The relation between the crystal formula and all of its constitutive
bond subformulae can be expressed as the subformula equation (bond–valence equation)
[9], which shows that the crystal formula is a linear combination of all types of constitutive
bond subformula. The subformula of any kind of chemical bond A–B in multibond crystal
AaBbDdGg . . . can be acquired by the following formula

[N(B–A)a/NCA]A[ N(A–B)b/NCB ]B. (1.1)

In the formula, A, B, D, G, . . . represent the different elements or the different sites of
the same elements in the crystal formula, anda, b, d, g, . . . represent the numbers of the
corresponding elements,N(I–J ) represents the number ofI ions in the coordination group
of a J ion and NCA and NCB, . . . represent the nearest coordination numbers of each
elements in the crystal.

After listing the subformula equation of a complex crystal, we can calculate each type
of subformula by using the PV theory [10]; the parameters in the calculation do not have
the same meanings as the original ones: these parameters need to be modified according
to the presented charge of ions in the chemical bond. In a complex crystal the numbers of
valence electrons associated with a particular bond,µ, between A and B ions areZµ

A and
Z

µ

B respectively, the nearest coordination numbers areN
µ

CA andN
µ

CB respectively and the
effective charges of each valence electron of A and B ions areq

µ

A and q
µ

B (whose values
can be determined by using the presented approach [9]), respectively. Here, we can obtain
the number of effective valence electrons of A and B ions

(Z
µ

A)∗ = Z
µ

Aq
µ

A (1.2)

(Z
µ

B)∗ = Z
µ

Bq
µ

B . (1.3)

The number of effective valence electrons perµ bond is

(nµ
e )∗ = (Z

µ

A)∗/Nµ

CA + (Z
µ

B)∗/Nµ

CB. (1.4)

The bond volumesvµ

b for the bonds of typeµ is as expected proportional to(dµ)3(v
µ

b ∝
(dµ)3), wheredµ is the nearest-neighbour distance; in the case of the multibond, it is defined
as

v
µ

b = (dµ)3/
∑

v

(dµ)3Nv
b (1.5)

whereNv
b is the number of bonds of typev per cubic centimetre, which can be obtained

from the structure data of the crystal, where the denominator is the normalized factor and
the sum overv runs over all the different types of bond.

The effective valence electron density associated with the bondµ is

(Nµ
e )∗ = (nµ

e )∗/vµ

b . (1.6)

According to the PV theory, the susceptibility of any bond is written as

χµ = (4π)−1(h̄�µ
p/Eµ

g )2 (1.7)

whereE
µ
g is the average energy gap between the bonding and the antibonding states,�

µ
p

is the plasma frequency

(�µ
p )2 = [4π(Nµ

e )∗e2/m]DµAµ (1.8)
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whereDµ andAµ are the correction factors [12],

Dµ = 1
µ

A1
µ

B − (δ
µ

Aδ
µ

B − 1)[(Zµ

A)∗ − (Z
µ

B)∗]2 (1.9)

Aµ = 1 − (Eµ
g /4E

µ

F ) + (Eµ
g /4E

µ

F )2/3 (1.10)

where1 andδ are constant parameters which depend on the rows of the periodic table to
which elements A and B belong.Eµ

F is the Fermi energy of the bondµ

E
µ

F = (h̄k
µ

F )2/2m (1.11)

k
µ

F = [3π2(Nµ
e )∗]1/3. (1.12)

We can separateEµ
g into homopolarEµ

h and heteropolarCµ parts

(Eµ
g )2 = (E

µ

h )2 + (Cµ)2 (1.13)

and

E
µ

h = 39.74/(dµ)2.48 (1.14)

Cµ = 14.4bµ exp(−kµ
s r

µ

0 )[(Zµ

A)∗/r
µ

0 − n(Z
µ

B)∗/r
µ

0 ] (1.15)

where

kµ
s = (4k

µ

F /πaB)1/2 (1.16)

and r
µ

0 is the average radius of A and B in̊angstr̈oms, which is equal to a half of the
nearest-neighbour distance

r
µ

0 = dµ/2 (1.17)

aB is the Bohr radius,n is the ratio of the two elements in the subformula,n > 1,
exp(−k

µ
s r

µ

0 ) is the Thomas–Fermi screening factor andbµ is a correction factor that is
proportional to the square of the average coordination numberN

µ

C

bµ = β(N
µ

C )2 (1.18)

N
µ

C = N
µ

CA/(1 + n) + nN
µ

CB/(1 + n). (1.19)

This correction factorbµ depends on a given crystal structure; in the simple type of AnB8−N

it is approximately constant and equal to 0.089 [13]. If the index of refraction or the
dielectric constant for the crystal is known, the value ofβ can be obtained from the above
equations.

If the crystal is composed of different types of bond (labelledµ), then the totalχ can
be resolved into contributionsχµ from the various types of bond,

χ =
∑

µ

Fµχµ =
∑

µ

N
µ

b χ
µ

b (1.20)

whereχµ is the total macroscopic susceptibility which a crystal composed entirely of bonds
of type µ would have.Fµ is the fraction of bonds of typeµ composing the actual crystal,
χ

µ

b is the susceptibility of a single bond of typeµ, and N
µ

b is the number of bonds per
cubic centimetre.

We can determinate the fractional ionicityf
µ

i and covalencyf µ
c of the individual bonds,

f
µ

i = (Cµ)2/(Eµ
g )2 f µ

c = (E
µ

h )2/(Eµ
g )2. (1.21)

The bond nonlinearities had been evaluated on the basis of the linear results by means
of the bond charge model of Levine [11]. The corresponding macroscopic properties are
the second-harmonic generation (SHG) coefficientsdijk, and the Miller delta1ijk. The
complete expression for the total nonlinear susceptibilitydijk can be written as

dijk =
∑

µ

Fµd
µ

ijk =
∑

µ

Fµ[dµ

ijk(C) + d
µ

ijk(Eh)] (1.22)
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whered
µ

ijk is the total macroscopic nonlinearity which a crystal composed entirely of bonds
of typeµ would have,dµ

ijk(C) the ionic fraction of the nonlinear optical coefficient,d
µ

ijk(Eh)

the covalent fraction,

Fµd
µ

ijk(C) = G
µ

ijkN
µ

b (14.4)bµ exp(−kµ
s r

µ

0 )[(Zµ

A)∗ + n(Z
µ

B)∗](χµ

b )2Cµ/(Eg)
2(dµ)2qµ

(1.23)

Fµd
µ

ijk(Eh) = G
µ

ijkN
µ

b (2s − 1)[rµ

0 /(r
µ

0 − rµ
c )]2f µ

c (χ
µ

b )2ρµ/dµqµ. (1.24)

G
µ

ijk is the geometrical contribution of the bonds of typeµ, which can simply be calculated
from

G
µ

ijk = 1/n
µ

b

∑
λ

α
µ

i (λ)α
µ

k (λ) (1.25)

where the sum onλ is over allnµ

b bonds of typeµ in the unit cell, andαµ

i (λ) is the direction
cosine with respect to theith coordinate axis of theλth bond of typeµ in the unit cell, the
difference in the atomic sizesρµ = (r

µ

A − r
µ

B )/(r
µ

A + r
µ

B ), r
µ

A and r
µ

B are the covalent radii
of atoms A and B; their values are taken from [14].r

µ

0 is the averaged radius of A and B
in ångstr̈oms,rµ

c the core radius, andrµ
c = 0.35rµ

0 . qµ is the bond charge of theµth bond,

qµ = (nµ
e )∗[1/(χµ + 1) + Kf µ

c ]e. (1.26)

K is a function of the average covalencyFc and of the coordination numberNcat of the
central cation, which is expressed as

K = (2Fc − 1.1)/Ncat (1.27)

whereFc is defined as

Fc =
∑

µ

N
µ

b f µ
c . (1.28)

Since Miller’s 1ijk [15] is normalized to the linear susceptibility, it is more closely
related to the intrinsic crystalline accentricity thandijk is, and1ijk is therefore a useful
representation for the nonlinear susceptibility. It is defined by [15]

1ijk = dijk/χi(2ωi)χj (ωj )χk(ωk) (1.29)

whereωi are the appropriate optical frequencies involved, andχi(2ωi) is the appropriate
susceptibility at 2ωi . The approximate form of the expression for1ijk is always introduced
as follows:

1ijk = dijk/χi(ωi)χj (ωj )χk(ωk). (1.30)

Further, we have

1ijk =
∑

µ

Fµ1
µ

ijk =
∑

µ

G
µ

ijkN
µ

b 1
µ
β (1.31)

where1
µ
β is the Miller’s 1 for the bondµ, i.e.,

1
µ
β = Fµ1

µ

ijk/G
µ

ijkN
µ

b . (1.32)

Further, we have

1ijk =
∑

µ

Fµ[1µ

ijk(C) + 1
µ

ijk(Eh)] (1.33)

Fµ1
µ

ijk(C) = G
µ

ijkN
µ

b (14.4)bµ exp(−kµ
s r

µ

0 )[(Zµ

A)∗ + n(Z
µ

B)∗](χµ

b )2Cµ/(Eg)
2(dµ)2qµχ3

(1.34)

Fµ1
µ

ijk(Eh) = G
µ

ijkN
µ

b (2s − 1)[rµ

0 /(r
µ

0 − rµ
c )]2f µ

c (χ
µ

b )2ρµ/dµqµχ3. (1.35)
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In the denominators of (1.34) and (1.35),χ is the total macroscopic susceptibility. This
1ijk formulation is useful since in our calculation we use the extrapolated low-frequency
electronic susceptibilityχ , whereas the experimentally measured nonlinearity may include
a significant amount of dispersion.

2. Results and discussion

The structure of NAB was first reported by Mills in 1962 as hexagonal with space group
R32 [16]. Hong and Dwight [1] also claimed that it was an accentric space groupR32,
with cell parametersa = 9.3416(6) Å, c = 7.3066(8) Å and Z = 3. The rhombohedral
structure, which was further supported [8, 17], had been disputed by Lutz and Huber [18],
and was reported to crystallize in two monoclinic space groupsC2/c and C2. Jarchow
et al [19] have described the crystal group of NAB as either rhombohedral or monoclinic
depending on the growth conditions. According to the applications and the behaviours in
the laser performance of NAB crystals developed in the Fujian Institute of Research on the
Structure of Matter, its structure should be the rhombohedral space groupR32.

According to the cell parameters [1], we have calculated the coordination numbers of
each ion and the values of the bond length of each bond in the NAB crystal, and the
calculated results reveal that the bond length of the Al–O(2) bond should be 1.947Å, not
the value of 2.948̊A presented in [1].

The structure of NAB is composed of two sets of isolated (BO3)
3− triangles, one (B1)

perpendicular, the other (B2) nearly so, to thec-axis. The Al3+ and Nd3+ ions occupy
O octahedra and trigonal prisms respectively. Edge-shared Al3+ octahedra form helices
along thec-axis. Isolated Nd3+ trigonal prisms alternate along thec-axis with the (BO3)

3−

triangles (B1) that are perpendicular to thec-axis. The slightly distorted Nd trigonal prisms
(2 × 2.3715 Å, 2 × 2.3712 Å, 2 × 2.3708 Å) have six nearest Nd atoms at a distance of
5.912Å and are connected alternately by the B(2) and Al atoms.

In view of its accentric space groupR32, NAB ought to be optically nonlinear. The
restrictions imposed by the crystal symmetry (32 symmetry) and the Kleinman symmetry
conditions [20] on the nonlinear optical coefficients mean that only one allowed independent
coefficientd11 exists in the NAB crystal.

According to the detailed structure information on the NAB crystal and the method of
the separation on the multinary crystal formula [9], we can write its subformula equation as

NdAl3(BO3)4 = 1/3NdO(3)2 + 1/3NdO(3′)2 + 1/3NdO(3′′)2

+AlO(1)2 + AlO(2)2 + AlO(3)2

+1/3B(1)O(1) + 2/3B(1)O(1′) + B(2)O(2) + 2B(2)O(3)

where NdO(3)2, NdO(3′)2 and NdO(3′′)2 represent the different types of Nd–O(3) bond
with the same bond length and different geometrical factorsG

µ

11; 2 represents the ratio of
the element numbers of O(3) to Nd.

The effective valence electron number of cations in each type of bond above is
Z∗

Nd = Z∗
Al = Z∗

B = 3, but the numbers of the effective valence electrons of O anions
in each type of bond are not equal: they areZ∗

0 = 4.5 in the Nd–O bond and Al–O bond,
andZ∗

0 = 9 in the B–O bond. These values reflect the different ambience of each O ion.
Using the known long-wavelength refractive index of NAB,n = 1.75, at 1.06µm [2], the
detailed bond parameters and linear and nonlinear susceptibilities of each type of bond can
be obtained; their values are listed in table 1.

The calculated results for the total SHG tensor coefficientdNAB
11 and the Miller delta

1NAB
11 are listed in table 1. There have been no reports of the value fordNAB

11 so far
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Table 1. The bond parameters and linear and nonlinear properties of each type of bond in the
NAB crystal, and their contributions to the total nonlinear optical tensor coefficientdNAB

11 at
1.06µm.

Nd–O(3) Nd–O(3′) Nd–O(3′′) Al–O(1) Al–O(2) Al–O(3) B(1)–O(1) B(1)–O(1′) B(2)–O(2) B(2)–O(3)

dµ (Å) 2.371 2.371 2.371 1.932 1.947 1.858 1.392 1.392 1.429 1.348
(n

µ
e )∗ 2.0 2.0 2.0 2.0 2.0 2.0 4.0 4.0 4.0 4.0

(N
µ
e )∗ 0.1937 0.1937 0.1937 0.3579 0.3497 0.4024 1.9140 1.9140 1.7691 2.1076

Eh (eV) 4.6709 4.6709 4.6709 7.7612 7.6138 8.5506 17.4986 17.4986 16.3964 18.9495
C (eV) 12.0576 12.0576 12.0576 18.7999 18.4953 20.4065 16.3004 16.3004 15.4409 17.4096
f

µ
c 0.1305 0.1305 0.1305 0.1456 0.1449 0.1493 0.5354 0.5354 0.5300 0.5423

4πχµ 1.5665 1.5665 1.5665 0.8935 0.9031 0.8473 4.1412 4.1412 4.3191 3.9345
χ

µ
b 0.6374 0.6374 0.6374 0.3635 0.3674 0.3447 1.6849 1.6849 1.7573 1.6008

qµ/e 0.7849 0.7849 0.7849 1.0626 1.0572 1.0891 0.8708 0.8708 0.8439 0.9046
ρµ 0.4617 0.4617 0.4617 0.3229 0.3229 0.3229 0.1365 0.1365 0.1365 0.1365
G

µ
11 −0.1259 0.5078 −0.0262 −.0738 −0.0512 0.1954 −1.0 0.125 0.25 0.5045

1
µ
β (×10−28) 0.0348 0.0348 0.0348 0.0187 0.0192 0.1606−0.8496 −0.8496 −0.8952 −0.7976

Fµ111(C)(×10−6 esu) −0.0245 0.0987 −0.0051 −0.0125 −0.0088 0.0300 −0.5571 0.1393 0.4622 1.4908
Fµ111(Eh)(×10−6 esu) 0.0197 −0.0795 0.0041 0.0080 0.0056 −0.0198 1.0187 −0.2547 −0.8270 −2.8025
1

µ
11(×10−6 esu) −0.0048 0.0192 −0.0010 −0.0045 −0.0032 0.0102 0.4616 −0.1154 −0.3648 −1.3117

d
µ
11(×10−9 esu) −0.0211 0.0850 −0.0044 −0.0199 −0.0142 0.0452 2.0409 −0.5102 −1.6128 −5.7995

1NAB
11 −1.31× 10−6 esu

dNAB
11 −5.81× 10−9 esu
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in the experimental literature. However, the nonlinear effects of the neodymium yttrium
aluminium borate NdxY1−xAl 3(BO3)4 (NYAB) crystal have been reported [21], and the
nonlinear coefficientd11 of the NYAB crystal has been measured to be 4.06 × 10−9 esu
(at 1.06µm). Comparing our results with the related crystal (NYAB), we can see that our
result for the nonlinear coefficientd11 of the NAB crystal (dNAB

11 = −5.81× 10−9 esu) is
quite reasonable.

In the calculation for the geometrical factorG
Nd–O(3)

11 , we find that in Nd–O(3) bonds,
there are three different values ofG

µ

11, although they have the same bond length. So, we can
distinguish between the bonds by using Nd–O(3), Nd–O(3′) and Nd–O(3′′); each of these
represents a different kind of bond with a differentG

µ

11 value. When we calculate the values
for GAl–O

11 andG
B(2)–O

11 in the unit cell, we find that each type of bond has the three different
values ofGµ

11, e.g., Al–O(1) bonds have the values ofGAl–O
11 ; 3 × 0.0006, 6× 0.2467 and

6 × −0.3577, and the valueGAl–O(1)

11 listed in table 1 is their average. From the different
values forGµ

11 of the same bond (e.g., in the AlO6 octahedra and B(2)O3 triangles), we can
see that there is an orientation disorder of the chemical bonds existing in the NAB crystal,
and it is just these disorders that make the contribution of the geometrical factorG

µ

11 to
the total nonlinearity quite large. It is these structural disorders (in the AlO6 octahedra and
B(2)O3 triangles) that contribute to the optical nonlinearity of the NAB crystal.

The results show that the most of the linear susceptibility exists in the B–O bond in
the NAB crystal. In the B(1)O3 group, because the signs forG

B(1)–O(1)

11 and G
B(1)–O(1′)
11

are opposite, and the cancellations betweenFµ111(C) and Fµ111(Eh) lead to quite low
nonlinearities, the group does not make the dominant contributions to the total nonlinearity
of the NAB crystal. On the contrary, the B(2)O3 group makes the dominant contributions
to the total nonlinear tensor coefficientdNAB

11 , because of the advantageousG
µ

11 and lack of
strong cancellation between the two parts (Fµ111(C) andFµ111(Eh)).

3. Conclusion

An investigation of the second-order optical nonlinearity in the NAB crystal revealed its
nonlinearity is closely related to the strict D3h symmetry of BO3 groups. Rigorously
speaking, the B(2)O3 groups give the NAB crystal quite a large value of the nonlinear
coefficient. We theoretically point out, therefore, for the first time, that the self-active laser
crystal NAB is at the same time a self-frequency-doubling laser crystal with a quite large
nonlinear coefficientdNAB

11 = −5.8×10−9 esu. The experimental work has demonstrated that
the NAB crystals have many good features, which makes it a good material for a minilaser
system which may have military, civilian, educational and scientific research applications.
The work we have done shows that the NAB crystal is also a good candidate material for
a high-quality self-frequency-doubling minilaser.
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